Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

A new sensitive HPLC/UV method for simultaneous determination of paclitaxel, sorafenib and omeprazole in standard solutions and spiked plasma: Application to in-vitro and in-vivo evaluation of paclitaxel polymeric nanoformulations

Mirina Sakhi1, Abad Khan1 , Ismail Khan1, Zafar Iqbal2, Sumaira Irum Khan2, Muzna Ali khattak2, Fahim Ullah3, Akhtar Aman4, Mehboob Alam5

1Department of Pharmacy, University of Swabi, Swabi-23561; 2Department of Pharmacy, University of Peshawar; 3Department of Pharmacy, City University of Science and Information Technology, Peshawar; 4Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Upper Dir District, Khyber Pakhtunkhwa; 5Department of Pharmacy, Capital University of Science and Information Technology, Islamabad, Pakistan.

For correspondence:-  Abad Khan   Email: drabadkhan@uoswabi.edu.pk   Tel:+92938490236

Accepted: 31 August 2021        Published: 30 September 2021

Citation: Sakhi M, Khan A, Khan I, Iqbal Z, Khan SI, khattak MA, et al. A new sensitive HPLC/UV method for simultaneous determination of paclitaxel, sorafenib and omeprazole in standard solutions and spiked plasma: Application to in-vitro and in-vivo evaluation of paclitaxel polymeric nanoformulations. Trop J Pharm Res 2021; 20(9):1949-1959 doi: 10.4314/tjpr.v20i9.23

© 2021 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To develop a simple, novel, sensitive and rapid reverse phase high performance liquid chromatographic method for simultaneous determination of paclitaxel, sorafenib and omeprazole in standard solutions and spiked human plasma and its application to the in-vitro and in-vivo evaluation of paclitaxel polymeric nanoparticle formulations.
Methods: The method was tested for the assessment of paclitaxel, omeprazole and sorafenib using tamoxifen citrate as internal standard. The analysis was performed at a wavelength of 235 nm using Thermo HS C18 column, 40 °C column oven temperature, acetonitrile and water (70:30 v/v, pH 3.37 adjusted with phosphoric acid) as a mobile phase and at a flow rate of 0.8 ml/min. All analytes were extracted by simple protein precipitation method using acetonitrile. The linearity was assessed in the concentration range of 1 - 2000 ng/mL for paclitaxel, omeprazole and sorafenib.
Results: The developed chromatographic method effectively separated omeprazole, paclitaxel, sorafenib and IS with retention time of 3.93, 5.18, 6.43 and 9.93 min, respectively. The chromatograms of the three target compounds and IS showed good resolution and peak separation. The LOD of the method was 1, 5 and. 5 ng/mL while the LOQ was 2, 7.5 and 10 ng/mL, for paclitaxel, sorafenib and omeprazole, respectively.
Conclusion: The proposed RP-HPLC–UV method for the assessment of paclitaxel, sorafenib and omeprazole in standard solutions and spiked plasma is simple, economical, sensitive and robust. The method is also suitable for the analysis of paclitaxel in nanoformulations and for its pharmacokinetic studies in an animal model.

Keywords: Paclitaxel, Sorafenib, Omeprazole, Tamoxifen citrate, RP-HPLC, Nanoformulations

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates